La multiplicación numérica tiene diversas facetas.
Enseñar solo un aspecto de la multiplicación genera ciertas dificultades de aprendizaje
- La multiplicación puede enseñarse colocando diversas situaciones que amplíen el panorama.
- El tránsito de número naturales a números fraccionarios genera un conflicto a los estudiantes de nivel primaria en la operación de la multiplicación.
Idea 150 de 1000 ideas de tesis: ¿Cómo superar la percepción de qué la multiplicación de dos números siempre es mayor? |
Idea de tesis 150 de 1000 ideas de tesis.
La enseñanza aprendizaje de un contenido particular de matemáticas induce diversas cuestiones que generan conflictos cognitivos en los estudiantes, la enseñanza de un cierto modo, puede devenir en un mal entendimiento del tema. La idea de tesis 150 de 1000 ideas de tesis se conduce por la siguiente pregunta ¿Cómo superar la percepción de qué la multiplicación de dos números siempre es mayor? Veamos.Ricaldi (2017) presenta una experiencia realizada con estudiantes de 6to grado de primaria en una institución educativa particular de la ciudad de Lima, quienes habían aprendido al multiplicar en el campo numérico de los números naturales y tenían la idea fuertemente arraigada que el producto era un valor mayor a los factores. Sin embargo, en el recorrido del último grado del nivel primario se encontraron que este conocimiento generalizado no era correcto. Se generó confusión cuando trabajaban con números enteros y fracciones y, comprobaban que el producto no era más grande que los factores.
Con éste panorama, Ricaldi comparte su experiencia didáctica propuesta para superar esta limitación conceptual cuando ampliaban los campos numéricos. Al mismo tiempo, presenta el análisis de algunos textos en relación al tratamiento de la multiplicación en diversos conjuntos numéricos. La pregunta de investigación que trató de contestar fue ¿Cómo generar el cambio conceptual relacionado a que el producto de dos números racionales no siempre es mayor que sus factores? El marco teórico que sustentó su propuesta es la teoría antropológica de lo didáctico.
Además agrega:
- La multiplicación de los números naturales y decimales se presenta sin un análisis previo que evidencie de manera natural la necesidad de la aplicación de la multiplicación. En el caso de los números enteros se recurre a una representación que va en consonancia con lo descrito por Euclides M x N como M veces N, donde M y N son números que representan respectivamente M veces y N veces una unidad. Por otro lado, la introducción de la multiplicación de fracciones recurre al modelamiento gráfico. Sin embargo, esto solo se aplica en la situación inicial; finalmente, las situaciones se focalizan hacia el cálculo algorítmico.
Con ello en mente Ricaldi (2017) realiza una propuesta para que los estudiantes puedan superar las limitaciones conceptuales que se han generado a partir de su proceso de aprendizaje.
Para concretar esta idea es recomendable tomar en cuenta diversos aspectos, tanto personales como profesionales, para que de allí se concrete en un protocolo de tesis y/o en un anteproyecto y, finalmente terminar tu trabajo de tesis. Es importante que recibas un acompañamiento certero para que tu proceso de investigación por tesis sea lo mejor de lo mejor y yo, Xaab Nop Vargas Vásquez, editor de 1000 Ideas de tesis, puedo ser tu mentor y guía, te invito a revisar mi lista de servicios personalizados, estoy seguro que en mi persona encontrarás las herramientas necesarias y suficientes para que la tesis no sea un dolor de cabeza para ti. Atrévete a encaminar tu trabajo de investigación hacia la originalidad y alto impacto.
Si te interesa este tema te sugiero lo siguiente:
- Elegir a un tema concreto de matemáticas
- Elegir un grupo de estudiantes
- Diseñar tus instrumentos de colección de datos y tu secuencia didáctica con base en una teoría.
- Aplicar tus instrumentos
- Analizar tus datos
- Comunicar tus resultados.
- Disfrutar de investigar investigando
Ricaldi, M. L. (2017). ¿El producto no es más grande que los factores? En el libro de Actas del VIII Congreso Iberoamericano de Educación Matemática (pp. 47 - 55). Madrid, España: VIII CIBEM.
0 comments: